DALLAS SEMICONDUCTOR

DS26528DK Octal T1/E1/J1 Transceiver Design Kit Daughter Card

www.maxim-ic.com

GENERAL DESCRIPTION

The DS26528DK is an easy-to-use evaluation board for the DS26528 octal T1/E1/J1 single-chip transceiver (SCT). The DS26528DK is intended to be used as a daughter card with either the DK2000 or the DK101 (included) motherboards. The board comes complete with a DS26528 SCT, transformers, termination resistors, configuration switches, network connectors, and motherboard connectors. The DK101/DK2000 motherboard and Dallas' ChipView software give point-and-click access to configuration and status registers from a Windows®-based PC. On-board LEDs indicate receive loss-of-signal and interrupt status, as well as multiple clock and signal routing configurations.

Each DS26528DK is shipped with a free DK101 motherboard. For complex applications, the DK2000 high-performance demo kit motherboard can be purchased separately.

Windows is a registered trademark of Microsoft Corp.

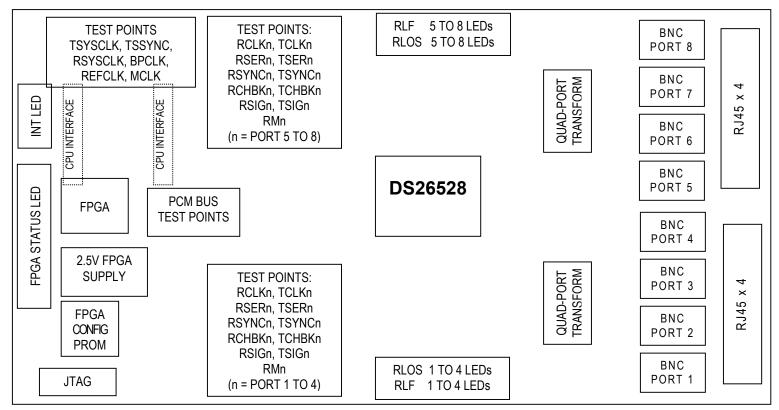
DESIGN KIT CONTENTS

DS26528DK Daughter Card DK101 Low-Cost Motherboard CD_ROM Including: ChipView Software DS26528DK Data Sheet DK101 Data Sheet DS26528 Data Sheet DS26528 Errata Sheet (if applicable)

FEATURES

- Demonstrates Key Functions of DS26528 T1/E1/J1 SCT
- Includes DS26528 SCT, Transformers, BNC and RJ48 Network Connectors, and Termination Passives
- BNC Connections for 75Ω E1
- RJ48 Connectors for 120Ω E1 and 100Ω T1
- Compatible with DK101 and DK2000 Demo Kit Motherboards
- DK101/DK2000 and ChipView Software Provide Point-and-Click Access to the DS21354 Register Set
- Software-Controlled (Register Mapped) Configuration Switches to Facilitate Clock and Signal Routing
- All Equipment-Side Framer Pins are Easily Accessible for External Data Source/Sink
- LEDs for Loss-Of-Signal and Interrupt Status as well as Indications for Multiple Clock and Signal Routing Configurations
- Easy-to-Read Silk Screen Labels Identify the Signals Associated with All Connectors, Jumpers, and LEDs

ORDERING INFORMATION


PART DESCRIPTION					
DS26528DK	DS26528 Demo Kit Daughter Card (with included DK101 Motherboard)				

COMPONENT LIST

DESIGNATION	QTY	DESCRIPTION	SUPPLIER	PART	
C1–C5, C7, C8, C9, C20, C21, C29–C32, C35, C40, C41, C43, C49, C50, C59, C60	22	1μF 10%, 16V ceramic capacitors (1206)	Panasonic	ECJ-3YB1C105K	
C6, C10–C18, C24, C33, C36–C39, C42, C44–C48	22	0.1μF 20%, 16V X7R ceramic capacitors (0603)	Arrow	0603YC104MAT2	
C19, C22, C23, C25–C28, C34, C61, C62	10	10μF 20%, 10V ceramic capacitors (1206)	Panasonic	ECJ-3YB1A106M	
C51–C58	8	0.1µF 10%, 25V ceramic capacitors (1206)	Panasonic	ECJ-3VB1E104K	
C63–C70	8	560pF 5%, 50V ceramic capacitors (1206)	Digi-Key	478-1489-2-ND	
D1	1	L_DIODE 1A, 50V general-purpose silicon	General Semiconductor	1N4001	
DS1	1	L_LED, GREEN, SMD	Panasonic	LN1351C	
DS2–DS18	17	LED, RED, SMD	Panasonic	LN1251C	
J1	1	L_TERMINAL strip, 10-pin, dual-row, vertical	Samtec	TSW-105-07-T-D	
J2–J9	8	22-pin headers, dual row, vertical	Samtec	HDR-TSW-111-14-T-D	
J10–J25	16	L_ 5-pin, 75 Ω vertical BNC connectors	Cambridge	CP-BNCPC-004	
J26, J27	2	Right-angle RJ45 8-pin, 4-port jack	Molex	43223-8140	
J28, J29	2	50-pin, dual-row, vertical SMD sockets	Samtec	TFM-125-02-S-D-LC	
JP1	1	12-pin, dual-row, vertical connector	Digi-Key	S2012-06-ND	
JP2, JP3, JP5–JP8	6	100-mil, 2 pos jumper Not populated	Labstock	Not populated	
JP4	1	12-pin, dual row, vertical connector Not populated	Digi-Key	S2012-06-ND	
R1–R32	32	0Ω 5%, 1/8W resistors (1206)	Panasonic	ERJ-8GEYJ0R00V	
R33	1	L_RES 330Ω 5%, 1/16W resistors (0603)	Panasonic	ERJ-3GEYJ331V	
R34, R35, R39–R54	18	330Ω 5%, 1/10W resistors (0805)	Panasonic	ERJ-6GEYJ331V	
R36, R38, R55	3	10kΩ 5%, 1/16W resistors (0603)	Panasonic	ERJ-3GEYJ103V	
R37	1	30Ω 5%, 1/10W resistor (0805)	Panasonic	ERJ-6GEYJ300V	
R56–R71	16	61.9Ω 1%, 1/8W resistors (1206)	Panasonic	ERJ-8ENF61R9V	
R72–R79	8	L_RES 51.1 Ω 1%, 1/10W resistors (0805) (ok to substitute for 5%)	Panasonic	ERJ-6ENF51R1V	
SW1–SW8	8	6-pin, DPDT, through-hole slide switches	Тусо	SSA22	
T1, T2	2	XFMR, XMIT/RCV, 1 to 2 and 1 to 1, SMT 32-pin	Pulse Engineering		
U1	1	8-Pin μMAX/SO 2.5V or Adj	Maxim	MAX1792EUA25	
U2	1	1Mb flash-based config mem	Xilinx	XCF01SV020C	
U3	1	Xilinx Spartan 2.5V FPGA, 256-pin BGA	Xilinx	XC2S50-5FG256C	
U4	1	256-pin BGA octal transceiver (0°C to +70°C)	Dallas Semiconductor	DS26528	

BOARD FLOORPLAN

PC BOARD ERRATA

The mode pins of the FPGA were incorrectly connected, which affects FPGA configuration. The hardware
modifications to correct this are not ideal, as the FPGA is in a race condition during power-up. The FPGA
requires a fast slew rate on V_{CC} during power-up. After power-up the LED DS1 will light green if FPGA
configuration is successful. If the DS1 LED does not light green, cycle power by removing and reattaching the
V_{CC} banana plug. The removal/reattach of the V_{CC} banana plug results in a faster slew rate on V_{CC} than simply
cycling the power supply.

BASIC OPERATION

This design kit relies upon several supporting files, which are available for downloading on our website at www.maxim-ic.com/DS26528DK QuickView data sheet for these files.

HARDWARE CONFIGURATION

Using the DK101 Processor Board:

- Connect the daughter card to the DK101 processor board.
- Supply 3.3V to the banana-plug receptacles marked GND and VCC_3.3V. (The external 5V connector is unused. Additionally, the "TIM 5V supply" headers are unused.)
- All processor board DIP switch settings should be in the ON position with exception for the Flash programming switch, which should be OFF.
- From the Programs menu launch the host application named *ChipView.exe*. Run the ChipView application. If the default installation options were used, click the Start button on the Windows toolbar and select Programs → ChipView → ChipView.

Using the DK2000 Processor Board:

- Connect the daughter card to the DK2000 processor board.
- Connect J1 to the power supply that is delivered with the kit. Alternately, a PC power supply may be connected to connector J2.
- From the Programs menu, launch the host application named *ChipView.exe*. Run the ChipView application. If the default installation options were used, click the Start button on the Windows toolbar and select Programs → ChipView → ChipView.

General:

- Upon power-up the RLOS LEDs (red) will be lit, the INT LED (red) will not be lit, and the FPGA Status LED (DS1 green) will be lit. (See the *PC Board Errata* section note regarding FPGA power-up configuration on page 3).
- When using BNC network connections, slide SW1–SW8 such that the BNC shell is grounded (indicated by the PC board silkscreen). When using RJ45 network connections, slide SW1–SW8 such that the BNC shell is not grounded (indicated by the PC board silkscreen).

QUICK SETUP (REGISTER VIEW)

- The PC will load ChipView offering a choice among DEMO MODE, REGISTER VIEW, and TERMINAL MODE. Select REGISTER VIEW.
- The program will request a definition file. Navigate to the .def files in the T1 or E1 folder, then select the _DS26528DK01A0_FPGA.def. Note: Through the "links" section this will also load the DS26528 global def file along with eight LIU def files and eight framer def files.
- The Register View Screen will appear, showing the register names, acronyms, and values for the DS26528.
- Predefined register settings for several functions are available as initialization files.
 - .ini files are loaded by selecting the menu <u>File \rightarrow Reg Ini File \rightarrow Load Ini File.</u>
 - Load the .ini file E1_75ohmLiu_ impMatchOn.ini.
 - After loading the .ini file, the following may be observed:
 - The RLOS LEDs extinguishes upon external loopback.
 - The DS26528 is in E1 mode with impedance match on and begins transmitting AIS.

Miscellaneous:

- Clock frequencies, port-to-port connection, and certain pin bias levels are provided by a register-mapped FPGA that is on the DS26528 daughter card.
- The definition file for this FPGA is named *DS26528DC_FPGA.def*. The FPGA register map definitions are located on page 6. A drop-down menu on the right of the screen allows for switching between definition files.
- All files referenced above are available for download as described in the section marked "BASIC OPERATION."

ADDRESS MAP

The DK101 daughter card address space begins at 0x81000000.

The DK2000 daughter card address space begins at:

0x3000000 for slot 0 0x4000000 for slot 1 0x5000000 for slot 2 0x6000000 for slot 3

All offsets given in the following table(s) are relative to the beginning of the daughter card address space (shown above).

OFFSET	DEVICE	DESCRIPTION
0X0000 to 0X0087	FPGA	Board identification and clock/signal routing
0X1000 to 0X10EF	DS26528	DS26528 Framer 1 Rx registers
0X10F0 to 0X10FF	DS26528	DS26528 Global registers
0X1100 to 0X11EF	DS26528	DS26528 Framer 1 Tx registers
0X11F0 to 0X11FF	DS26528	DS26528 reserved registers
0X1200 to 0X1FFF	DS26528	DS26528 Framer 2 to 8 registers
0X2000 to 0X20FF	DS26528	DS26528 LIU 1 to 8 registers
0X2100 to 0X217F	DS26528	DS26528 BERT 1 to 8 registers
0X2180 to 0X2FFF	DS26528	DS26528 reserved registers

 Table 1. Daughter Card Address Map

Registers in the FPGA can be easily modified using the ChipView host-based user interface software along with the definition file named "DS26528DC_FPGA.def."

FPGA Register Map

Table 2. FPGA Register Map

OFFSET	REGISTER NAME	TYPE	DESCRIPTION
0X0000	BID	Read only	Board ID
0X0002	XBIDH	Read only	High Nibble Extended Board ID
0X0003	XBIDM	Read only	Middle Nibble Extended Board ID
0X0004	XBIDL	Read only	Low Nibble Extended Board ID
0X0005	BREV	Read only	Board FAB Revision
0X0006	AREV	Read only	Board Assembly Revision
0X0007	PREV	Read only	PLD Revision
0X0010	PINSET	Control	DS26528 Configuration Pin Settings
0X0011	CSR	Control	DS26528 MCLK and REFCLKIO Source
0X0012	SYSCLK_TR	Control	DS26528 Tx and Rx SYSCLK Source
0X0013	SYNCTSS	Control	DS26528 TSSYNC Source
0X0014			
0X0024			
0X0034			
0X0044	TCSRn	Control	DS26528 TCLK Source, Ports 8–1
0X0054	(n = 8 to 1)	Control	DS20520 TCER Source, Foils 6-1
0X0064			
0X0074			
0X0084			
0X0015			
0X0025			
0X0035			
0X0045	TSYNCSn	Control	DS26528 TSYNC Source, Ports 8–1
0X0055	(n = 8 to 1)	Control	D320320 13 THE Source, Foils 0-1
0X0065			
0X0075			
0X0085			
0X0016			
0X0026			
0X0036			
0X0046	RSYNCSRn	Control	DS26528 RSYNC Source Select, Ports 8–1
0X0056	(n = 8 to 1)	Control	
0X0066			
0X0076			
0X0086			
0X0017			
0X0027			
0X0037			
0X0047	TSERSRn	Control	DS26528 TSER Source, Ports 8–1
0X0057	(n = 8 to 1)	Control	
0X0067			
0X0077			
0X0087			
0X0018	PRSER	Control	PCM RSER Source
0X0019	PSYNC	Control	PCM RSYNC/TSYNC Source
0X001A	PCLK	Control	PCM RCLK/TCLK Source

ID REGISTERS

BID: BOARD ID (Offset=0X0000)

BID is read only with a value of 0xD.

XBIDH: HIGH NIBBLE EXTENDED BOARD ID (Offset=0X0002)

XBIDH is read only with a value of 0x0.

XBIDM: MIDDLE NIBBLE EXTENDED BOARD ID (Offset=0X0003) XBIDM is read only with a value of 0x1.

XBIDL: LOW NIBBLE EXTENDED BOARD ID (Offset=0X0004) XBIDL is read only with a value of 0x6.

BREV: BOARD FAB REVISION (Offset=0X0005) BREV is read only and displays the current fab revision.

AREV: BOARD ASSEMBLY REVISION (Offset=0X0006) AREV is read only and displays the current assembly revision.

PREV: PLD REVISION (Offset=0X0007)

PREV is read only and displays the current PLD firmware revision.

CONTROL REGISTERS

Register Name: **PINSET** Register Description: **DS26528 Configuration Pin Settings** Register Offset: **0x0010**

Bit #	7	6	5	4	3	2	1	0
Name	—		—	_	TXEN	SCANMO	SCANEN	DIGIOEN
Default			_		1	0	0	1

Bit 3: DS26528 TXEN PIN

0 = Drive DS26528 TX ENABLE pin Low (Tri-state TTIP and TRING)

1 = Drive DS26528 TX ENABLE pin High (Normal operation, drive TTIP and TRING with data)

Bit 2: DS26528 SCANMO PIN

0 = Drive DS26528 SCAN MODE pin Low (Normal operation) 1 = Drive DS26528 SCAN MODE pin High

Bit 1: DS26528 SCANEN PIN

0 = Drive DS26528 SCAN ENABLE pin Low (Normal operation)

1 = Drive DS26528 SCAN ENABLE pin High

Bit 0: DS26528 DIGIOEN PIN

0 = Drive DS26528 DIGIO ENABLE pin Low (Tri-state all DS26528 pins, if JTRST is low)

1 = Drive DS26528 DIGIO ENABLE pin High (Normal operation)

Register Name: CSR

Register Description: DS26528 MCLK and REFCLKIO Source Register Offset: 0x0011

Bit #	7	6	5	4	3	2	1	0
Name	RCSRC1	RCSRC0	_	_	_	_	MSRC1	MSRC0
Default	1	1	_	_	_	_	0	1

Bits 7 and 6: DS26528 REFCLKIO Source (RCSRC[1:0])

REFCLKIO Connection is defined in Table 3.

Table 3. REFCLKIO Source Definition

RCSRC1, RCSRC0	REFCLKIO CONNECTION
00	Drive REFCLKIO with the 1.544MHz clock
01	Drive REFCLKIO with the 2.048MHz clock
1x	Tri-state REFCLKIO

Bits 1 and 0: DS26528 MCLK Source (MSRC[1:0]

MCLK Connection is defined in Table 4.

Table 4. MCLK Source Definition

MSRC1, MSCR0	MCLK CONNECTION
00	Drive MCLK with the 1.544MHz clock
01	Drive MCLK with the 2.048MHz clock
1x	Tri-state MCLK

Register Name: SYSCLK_TR Register Description: DS26528 TSYSCLK and RSYSCLK Source Register Offset: 0x0012

Bit #	7	6	5	4	3	2	1	0
Name	RS1	RS0	—	_	_	—	TS1	TS0
Default	0	1	—	—	_	_	0	1

Bits 7 and 6: DS26528 Port 4 RSYSCLK Source (RS1, RS0) The source for RSYSCLK 4 is defined as shown in Table 5.

Table 5. RSYSCLK Source Definition

RS1, RS0	RSYSCLK CONNECTION
00	Drive RSYSCLK with the 1.544MHz clock
01	Drive RSYSCLK with the 2.048MHz clock
10	Drive RSYSCLK with 8.192MHz clock
11	Drive RSYSCLK with DS26528 port BPCLK

Bits 1 and 0: DS26528 Port 1 TSYSCLK Source (TS1, TS0)

The source for TSYSCLK is defined as shown in Table 6.

Table 6. TSYSCLK Source Definition

TS1, TS0	TSYSCLK CONNECTION
00	Drive TSYSCLK with the 1.544MHz clock
01	Drive TSYSCLK with the 2.048MHz clock
10	Drive TSYSCLK with 8.192MHz clock
11	Drive TSYSCLK with DS26528 port BPCLK

Register Name: SYNCTSS Register Description: DS26528 TSSYNC Source Register Offset: 0x0013

Bit #	7	6	5	4	3	2	1	0
Name	_	—	_	_	TSRC3	TSRC2	TSRC1	TSRC0
Default	_	—	_		0	0	0	0

Bit 3 to 0: DS26528 TSSYNC Source Select (TSRC[3:0]) The source for TSSYNC is defined below.

TSRC3–TSRC0 TSSYNC SOURCE DEFINITION					
0000	Not using transmit-side elastic store, tri-state FPGA pin connected to TSSYNC (weak pulldown)				
0001	Drive TSSYNC with RSYNC 1				
0010	Drive TSSYNC with RSYNC 2				
0011	Drive TSSYNC with RSYNC 3				
0100	Drive TSSYNC with RSYNC 4				
0101	Drive TSSYNC with RSYNC 5				
0110	Drive TSSYNC with RSYNC 6				
0111	Drive TSSYNC with RSYNC 7				
1000	Drive TSSYNC with RSYNC 8				

Note: When driving TSSYNC with RSYNCx, the corresponding DS26528 port should be configured such that RSYNCx is an output (RIOCR.2 = 0).

Register Name: TCSRn (n = 8 to 1) Register Description: DS26528 TCLK Source Ports 8–1 Register Offset: 0x0014, 0x0024, 0x0034, 0x0044, 0x0054, 0x0064, 0x0074, 0x0084,

Bit #	7	6	5	4	3	2	1	0
Name		_		_	TDS3	TDS2	TDS1	TDS0
Default		_	—		See note	See note	See note	See note

Bits 3 to 0: DS26528 Port 1 TCLK Source (TDS[3:0])

TDS3-TDS0	TCLKx SOURCE DEFINITION
0000	Tri-state TCLKx
0001	Drive TCLKx with RCLK1
0010	Drive TCLKx with RCLK2
0011	Drive TCLKx with RCLK3
0100	Drive TCLKx with RCLK4
0101	Drive TCLKx with RCLK5
0110	Drive TCLKx with RCLK6
0111	Drive TCLKx with RCLK7
1000	Drive TCLKx with RCLK8
1001	Drive TCLKx with the 1.544MHz clock
1010	Drive TCLKx with the 2.048MHz clock

Note: Initial values are such that TCLK1←RCLK1, TCLK2←RCLK2, TCLK3←RCLK3, TCLK4←RCLK4, TCLK5←RCLK5, TCLK6←RCLK6, TCLK7←RCLK7, TCLK8←RCLK8, which corresponds to address 0x14 = 0b0001, address 0x24 = 0b0010, address 0x34 = 0b0011, address 0x44 = 0b0100, address 0x54 = 0b0101, address 0x64 = 0b0110, address 0x74 = 0b0111 and address 0x84 = 0b1000.

Register Name: TSYNCSn (n = 8 to 1) Register Description: DS26528 TSYNC Source Ports 8–1 Register Offset: 0x0015, 0x0025, 0x0035, 0x0045, 0x0055, 0x0065, 0x0075, 0x0085

Bit #	7	6	5	4	3	2	1	0
Name		_	_	_	TSRC3	TSRC2	TSRC1	TSRC0
Default					0	0	0	0

Bits 3 to 0: DS26528 Port 1 TSYNC Source (TSRC[3:0])

TSRC3-TSRC	TSYNCx SOURCE DEFINITION
0000	Tri-state TSYNCx
0001	Drive TSYNCx with RSYNC1
0010	Drive TSYNCx with RSYNC2
0011	Drive TSYNCx with RSYNC3
0100	Drive TSYNCx with RSYNC4
0101	Drive TSYNCx with RSYNC5
0110	Drive TSYNCx with RSYNC6
0111	Drive TSYNCx with RSYNC7
1000	Drive TSYNCx with RSYNC8

Note: When driving TSYNCx with RSYNCx, the corresponding DS26528 port should be configured such that TSYNCx is an input (TIOCR.2 = 0) and RSYNCx is an output (RIOCR.2 = 0).

Register Name: RSYNCSRn (n = 8 to 1)

Register Description: DS26528 RSYNC Source Select, Ports 8–1 Register Offset: 0x0016, 0x0026, 0x0036, 0x0046, 0x0056, 0x0066, 0x0076, 0x0086

Bit #	7	6	5	4	3	2	1	0
Name	_		_	_	RIO3	RIO2	RIO1	RIO0
Default					0	0	0	0

Bits 3 to 0: DS26528 Port 1 RSYNC Source (RIO[3:0])

RIO3-RIO0	RSYNCx SOURCE DEFINITION
0000	Tri-state RSYNCx
0001	Drive RSYNCx with RSYNC1
0010	Drive RSYNCx with RSYNC2
0011	Drive RSYNCx with RSYNC3
0100	Drive RSYNCx with RSYNC4
0101	Drive RSYNCx with RSYNC5
0110	Drive RSYNCx with RSYNC6
0111	Drive RSYNCx with RSYNC7
1000	Drive RSYNCx with RSYNC8

Note: When driving RSYNCy with RSYNCx, the corresponding DS26528 port should be configured such that RSYNCx is an output (RIOCR.2 = 0) and RSYNCy is an input (RIOCR.2 = 1).

Register Name: TSERSRn (n = 8 to 1) Register Description: DS26528 TSER Source, Ports 8–1 Register Offset: 0x0017, 0x0027, 0x0037, 0x0047, 0x0057, 0x0067,0x0077, 0x0087

Bit #	7	6	5	4	3	2	1	0
Name	_	—	—	_	TS3	TS2	TS1	TS0
Default	_	—	—	_	See note	See note	See note	See note

Bits 3 to 0: DS26528 Port 1 TSER Source (TSRC[3:0])

TS3-TS0	TSERx SOURCE DEFINITION
0000	Tri-state TSERx
0001	Drive TSERx with RSER1
0010	Drive TSERx with RSER2
0011	Drive TSERx with RSER3
0100	Drive TSERx with RSER4
0101	Drive TSERx with RSER5
0110	Drive TSERx with RSER6
0111	Drive TSERx with RSER7
1000	Drive TSERx with RSER8
1001	Drive TSERx with data from PCM bus

Note: Initial values are such that TSER1←RSER1, TSER2←RSER2, TSER3←RSER3, TSER4←RSER4, TSER5←RSER5, TSER6←RSER6, TSER7←RSER7, TSER8←RSER8, which corresponds to address 0x17 = 0b0001, address 0x27 = 0b0010, address 0x37 = 0b0011, address 0x47 = 0b0100, address 0x57 = 0b0101, address 0x67 = 0b0110, address 0x77 = 0b0111 and address 0x87 = 0b1000.

Register Name: **PRSER** Register Description: **PCM RSER Source** Register Offset: **0x0018**

Bit #	7	6	5	4	3	2	1	0
Name	R8EN	R7EN	R6EN	R5EN	R4EN	R3EN	R2EN	R1EN
Default	0	0	0	0	0	0	0	0

Note: The PRSER register is for use with the DK2000 only.

Bit 7: PCM RSER Source (R8EN)

0 = Do not drive DS26528 Port 8 RSER onto PCM_RSER

1 = Logically OR DS26528 Port 8 RSER with selected other RSER pins and drive onto PCM_RSER

Bit 6: PCM RSER Source (R7EN)

0 = Do not drive DS26528 Port 7 RSER onto PCM_RSER

1 = Logically OR DS26528 Port 7 RSER with selected other RSER pins and drive onto PCM_RSER

Bit 5: PCM RSER Source (R6EN)

0 = Do not drive DS26528 Port 6 RSER onto PCM_RSER

1 = Logically OR DS26528 Port 6 RSER with selected other RSER pins and drive onto PCM_RSER

Bit 4: PCM RSER Source (R5EN)

0 = Do not drive DS26528 Port 5 RSER onto PCM_RSER

1 = Logically OR DS26528 Port 5 RSER with selected other RSER pins and drive onto PCM_RSER

Bit 3: DS26528 PCM RSER Source (R4EN)

0 = Do not drive DS26528 Port 4 RSER onto PCM_RSER

1 = Logically OR DS26528 Port 4 RSER with selected other RSER pins and drive onto PCM_RSER

Bit 2: PCM RSER Source (R3EN)

0 = Do not drive DS26528 Port 3 RSER onto PCM_RSER

1 = Logically OR DS26528 Port 3 RSER with selected other RSER pins and drive onto PCM_RSER

Bit 1: PCM RSER Source (R2EN)

0 = Do not drive DS26528 Port 2 RSER onto PCM_RSER

1 = Logically OR DS26528 Port 2 RSER with selected other RSER pins and drive onto PCM_RSER

Bit 0: PCM RSER Source (R1EN)

0 = Do not drive DS26528 Port 1 RSER onto PCM_RSER

1 = Logically OR DS26528 Port 1 RSER with selected other RSER pins and drive onto PCM_RSER

Register Name: **PSYNC** Register Description: **PCM RSYNC/TSYNC Source** Register Offset: **0x0019**

Bit #	7	6	5	4	3	2	1	0
Name	TSR3	TSR2	TSR1	TSR0	RSR3	RSR2	RSR1	RSR0
Default	0	0	0	0	0	0	0	0

Note: PSYNC register is for use with the DK2000 only.

Bits 7 to 4: PCM_TSYNC Source (TSR[3:0])

TSR3-TSR0	PCM_TSYNC SOURCE					
0000	Tri-state PCM_TSYNC					
0001	PCM_TSYNC is driven by DS26528 port 1 TSYNC					
0010	PCM_TSYNC is driven by DS26528 port 2 TSYNC					
0011	PCM_TSYNC is driven by DS26528 port 3 TSYNC					
0100	PCM_TSYNC is driven by DS26528 port 4 TSYNC					
0101	PCM_TSYNC is driven by DS26528 port 5 TSYNC					
0110	PCM_TSYNC is driven by DS26528 port 6 TSYNC					
0111	PCM_TSYNC is driven by DS26528 port 7 TSYNC					
1000	PCM_TSYNC is driven by DS26528 port 8 TSYNC					

Bits 3 to 0: PCM_RSYNC Source (RSR[3:0])

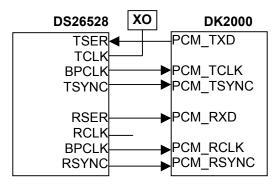
RSR3-RSR0	PCM_RSYNC SOURCE
0000	Tri-state PCM_RSYNC
0001	PCM_RSYNC is driven by DS26528 port 1 RSYNC
0010	PCM_RSYNC is driven by DS26528 port 2 RSYNC
0011	PCM_RSYNC is driven by DS26528 port 3 RSYNC
0100	PCM_RSYNC is driven by DS26528 port 4 RSYNC
0101	PCM_RSYNC is driven by DS26528 port 5 RSYNC
0110	PCM_RSYNC is driven by DS26528 port 6 RSYNC
0111	PCM_RSYNC is driven by DS26528 port 7 RSYNC
1000	PCM_RSYNC is driven by DS26528 port 8 RSYNC

Register Name: **PCLK** Register Description: **PCM RCLK/TCLK Source** Register Offset: **0x001A**

Bit #	7	6	5	4	3	2	1	0
Name	TSR3	TSR2	TSR1	TSR0	RSR3	RSR2	RSR1	RSR0
Default	0	0	0	0	0	0	0	0

Note: PCLK register is for use with the DK2000 only.

Bits 7 to 4: PCM_TCLK Source (TSR[3:0])


TSR3—TSR0	PCM_TCLK SOURCE
0000	Tri-state PCM_TCLK pin at FPGA
0001	PCM_TCLK is driven by source used for DS26528 port 1 TCLK
0010	PCM_TCLK is driven by source used for DS26528 port 2 TCLK
0011	PCM_TCLK is driven by source used for DS26528 port 3 TCLK
0100	PCM_TCLK is driven by source used for DS26528 port 4 TCLK
0101	PCM_TCLK is driven by source used for DS26528 port 5 TCLK
0110	PCM_TCLK is driven by source used for DS26528 port 6 TCLK
0111	PCM_TCLK is driven by source used for DS26528 port 7 TCLK
1000	PCM_TCLK is driven by source used for DS26528 port 8 TCLK
1001	PCM_TCLK is driven by DS26528 BPCLK

Bits 3 to 0: PCM_RCLK Source (RSR[3:0])

RSR3-RSR0	PCM_RCLK SOURCE
0000	Tri-state PCM_RCLK pin at FPGA
0001	PCM_RCLK is driven by DS26528 port 1 RCLK
0010	PCM_RCLK is driven by DS26528 port 2 RCLK
0011	PCM_RCLK is driven by DS26528 port 3 RCLK
0100	PCM_RCLK is driven by DS26528 port 4 RCLK
0101	PCM_RCLK is driven by DS26528 port 5 RCLK
0110	PCM_RCLK is driven by DS26528 port 6 RCLK
0111	PCM_RCLK is driven by DS26528 port 7 RCLK
1000	PCM_RCLK is driven by DS26528 port 8 RCLK
1001	PCM_RCLK is driven by DS26528 BPCLK

FPGA CONTROL EXAMPLES

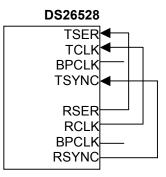

Scenario #1: DS26528 to/from DK2000

Table 7. FPGA Configuration for Scenario #1 (Port 1, T1 Mode)

REGISTER NAME	SETTING	COMMENT
CSR	0X01	Drive DS26528 MCLK with 2.048MHz
TCSR1	0X09	Drive TCLK with 1.544MHz
SYSCLK_TR	0X00	Drive TSYSCLK and RSYSCLK with 1.544MHz
TSYNCS1	0X00	Tri-state FPGA driver pin for DS26528 TSYNC1
SYNCTSS	0X01	Drive TSSYNC with RSYNC1
RSYNCSRn	0X00	Tri-state FPGA driver pin for DS26528 RSYNC
TSERSR1	0X09	Drive DS26528 TSER1 with data from PCM bus
PRSER	0X01	Drive DS26528 RSER1 onto PCM bus
PSYNC	0X11	PCM RSYNC and PCM TSYNC are provided by DS26528 port 1 RSYNC and TSYNC (respectively)
PCLK	0X99	PCM RCLK and TCLK are driven by port 1 BPCLK

Scenario #2: External Remote Loopback (full bandwidth, not just payload)

Table 8. FPGA Configuration for Scenario #2 (Port 1, T1 Mode)

REGISTER NAME	SETTING	COMMENT				
CSR	0X01	Drive DS26528 MCLK with 2.048MHz				
TCSR1	0X01	Drive TCLK1 with RCLK1				
SYSCLK_TR	0X00	Drive TSYSCLK with 1.544MHz				
TSYNCS1	0X01	Drive TSYNC1 with RSYNC1				
SYNCTSS	0X01	Drive TSSYNC with RSYNC1				
RSYNCSRN	0X00	Tri-state FPGA driver pin for DS26528 RSYNC				
TSERSR1	0X01	Drive DS26528 TSER1 with data from RSER1				
PRSER	NA	Unused				
PSYNC	NA	Unused				
PCLK	NA	Unused				

Table 9. DS26528 Partial Configuration for Scenario #2 (Port 1, T1 Mode)

REGISTER NAME	SETTING	COMMENT
RIOCR	RSIO = 0	RSYNC is an output
TIOCR	TSIO = 0	TSYNC is an input
TESCR	TESE = 0	Bypass Rx and Tx elastic stores
RESCR	RESE = 0	Bypass fix and TX elastic stores
TCR3	TCSS1 = 0	TCLK is driven by TCLK pin
TCR3	TCSS2 = 0	

DS26528 INFORMATION

For more information about the DS26528, consult the DS26528 data sheet available on our website at <u>www.maxim-ic.com/DS26528</u>. Software downloads are also available for this design kit.

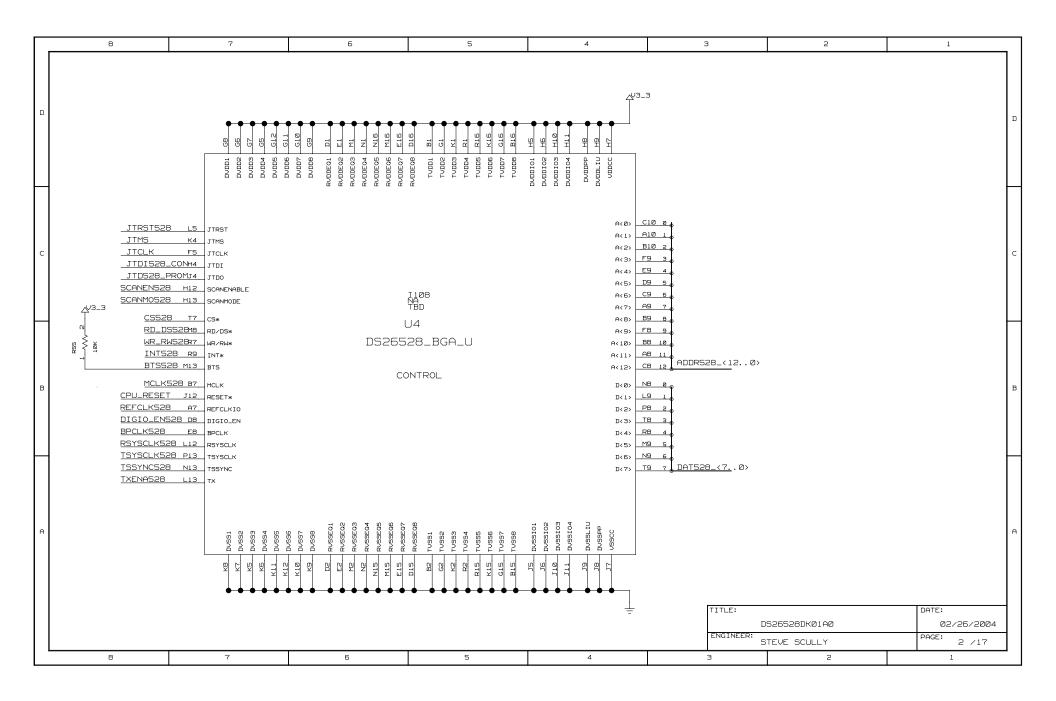
DS26528DK INFORMATION

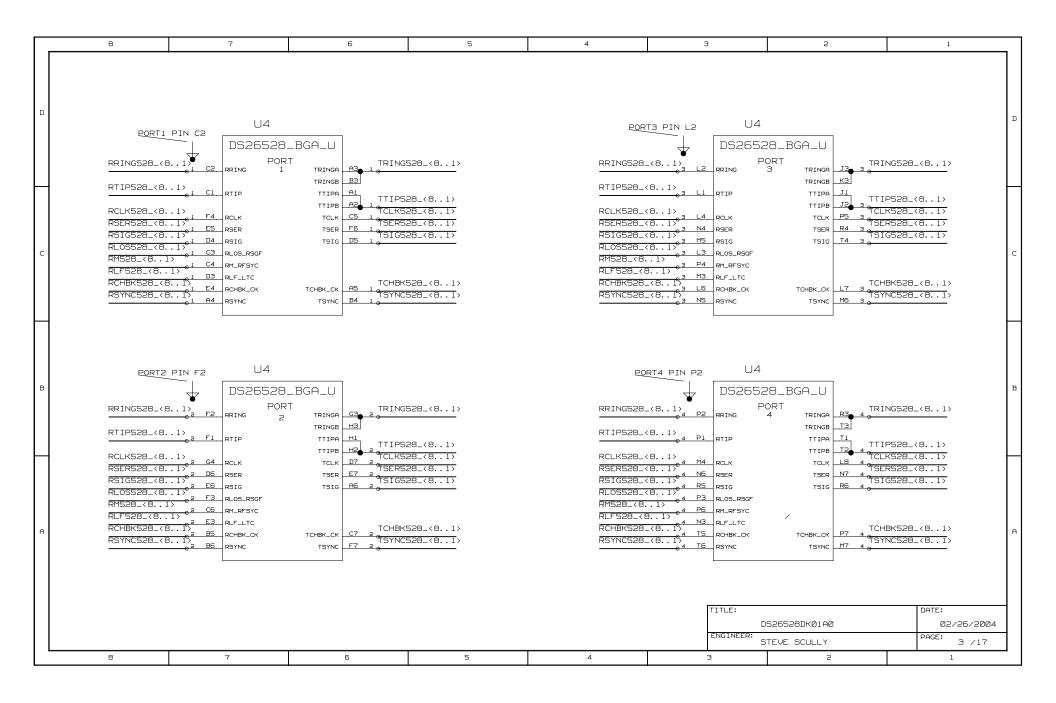
For more information about the DS26528DK, including software downloads, consult the DS26528DK data sheet available on our website at <u>www.maxim-ic.com/DS26528DK</u>.

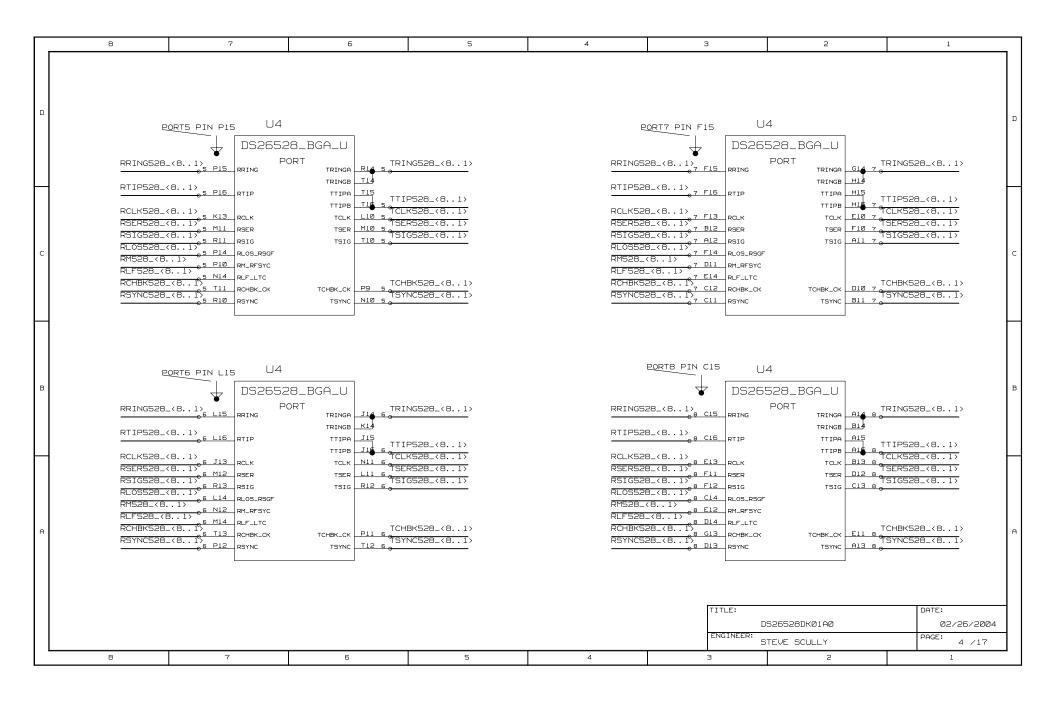
TECHNICAL SUPPORT

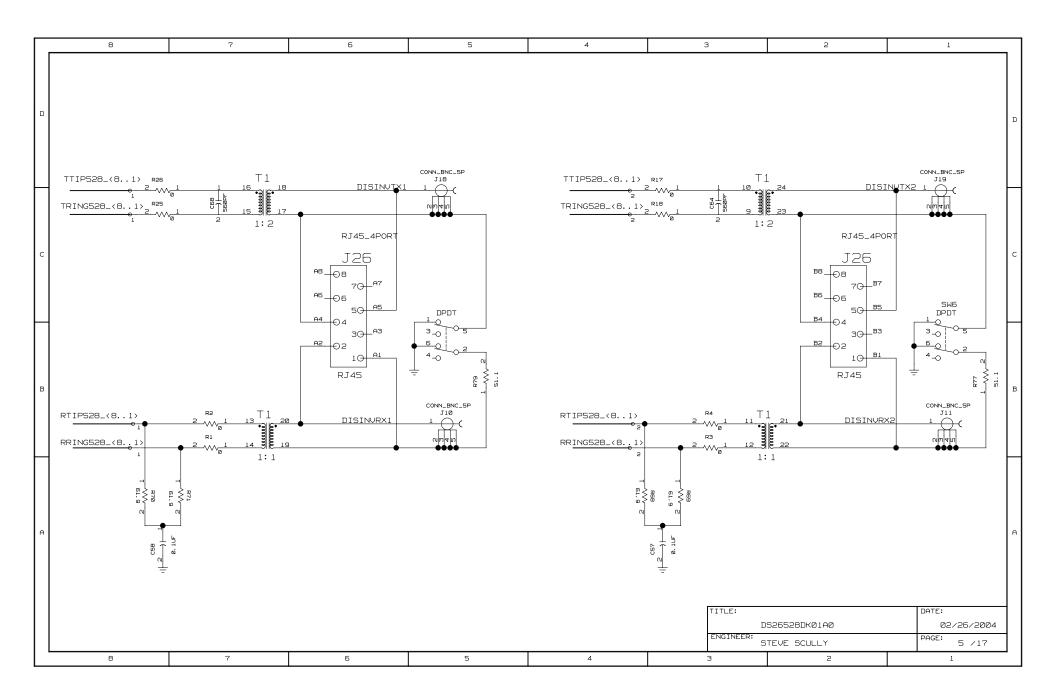
For additional technical support, please e-mail your questions to telecom.support@dalsemi.com.

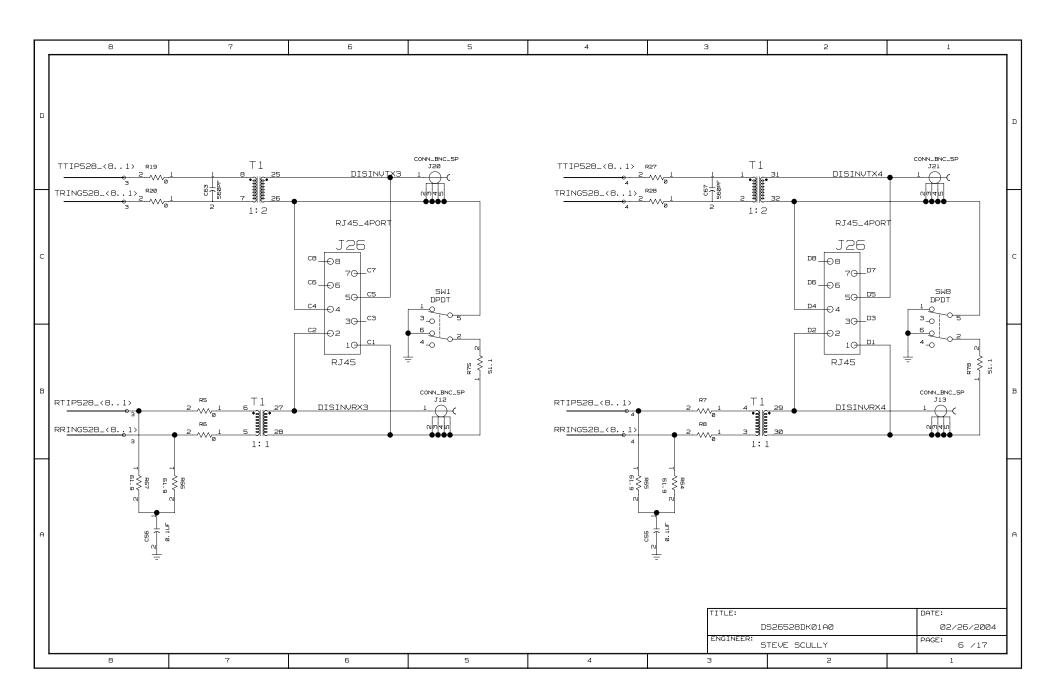
SCHEMATICS

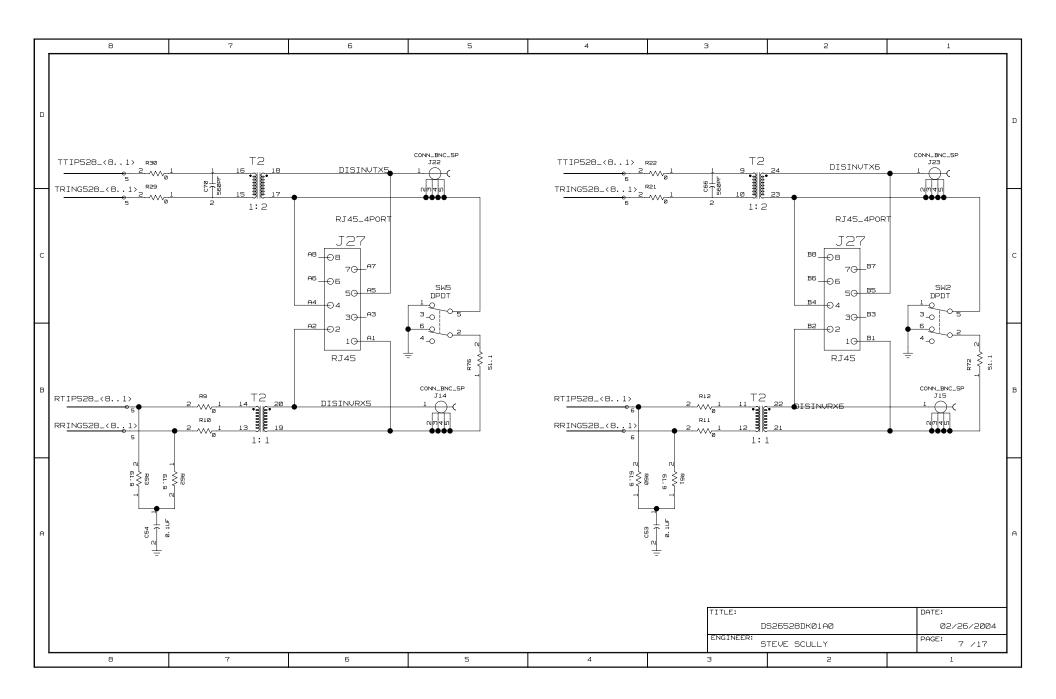

The DS26528DK schematics are featured in the following pages.

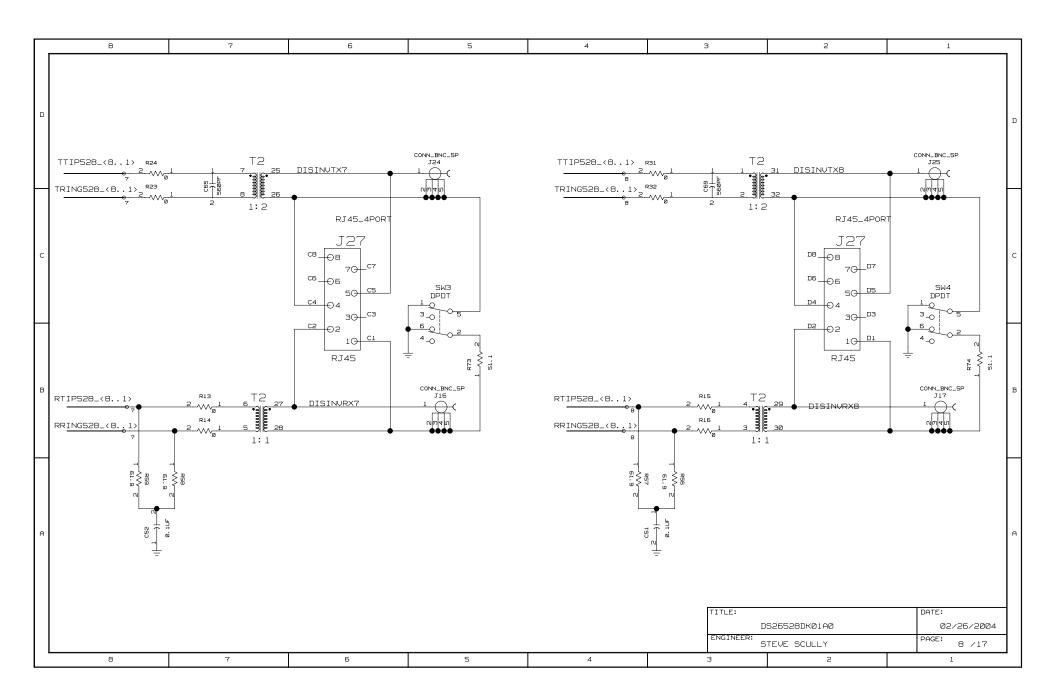

19 of 36

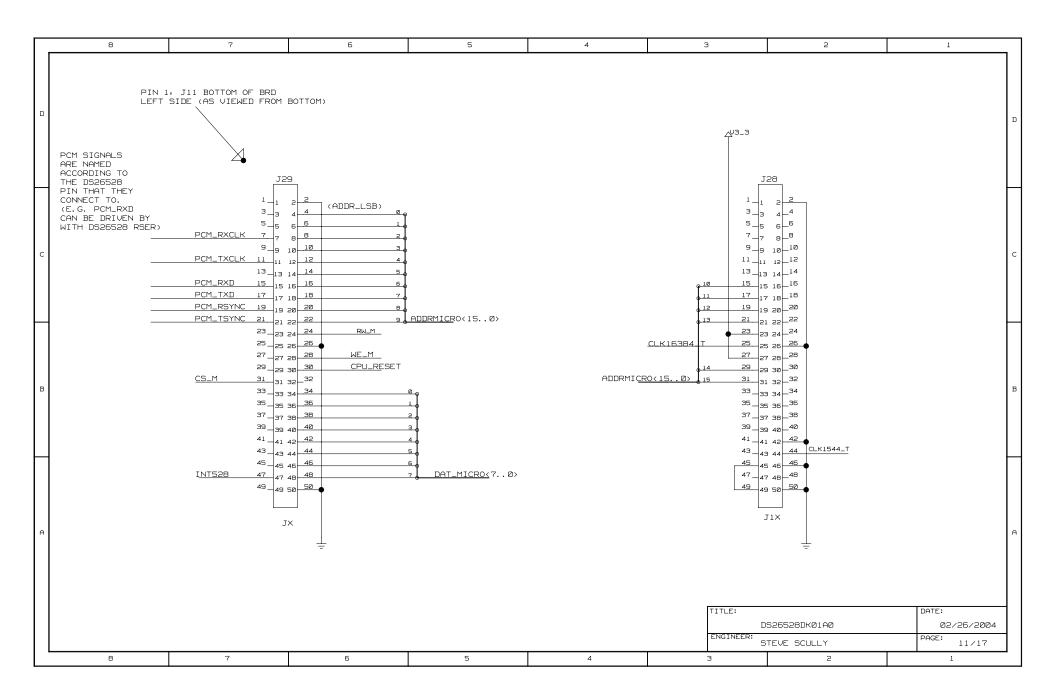

Maxim/Dallas Semiconductor cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim/Dallas Semiconductor product. No circuit patent licenses are implied. Maxim/Dallas Semiconductor reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2005 Maxim Integrated Products • Printed USA

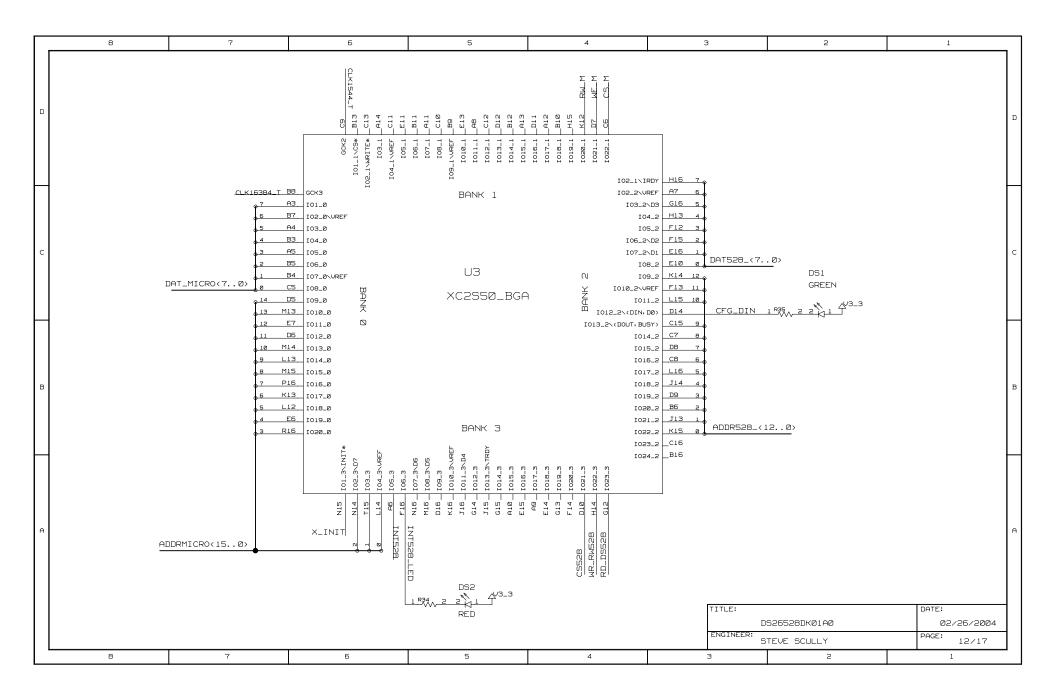

The Maxim logo is a registered trademark of Maxim Integrated Products, Inc. The Dallas logo is a registered trademark of Dallas Semiconductor Corporation.

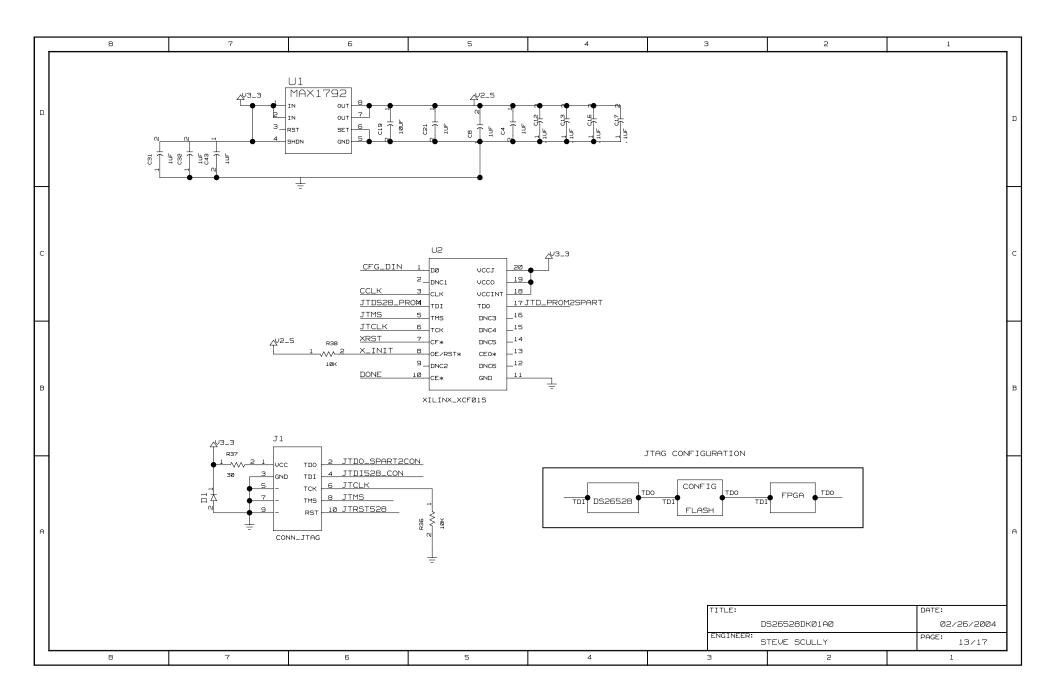

	8	7	6	5	4	3	2	1	
а					528			·	ם
c			1/E1/J	1 KAI	NSCEIV	PER DES	51GN K		с
в	CONTENTS 1. CONTENTS 2. D526528 CONTR 3. D526528 PORTS 4. D526528 PORTS 5. D526528 BNC / 6. D526528 BNC / 7. D526528 BNC / 8. D526528 BNC /	1-4 5-8 XFRM 1-2 XFRM 3-4 XFRM 5-6							в
A	14. FPGA CONTROL 15. DECOUPLING 16. CROSS REF NET 17. CROSS REF PAR	MUX) POINTS ERFACE DATA BUS FGPA FLASH - VOLTAGE LIST				TITLE:	PRINTED: Mon Jun 28 1	DATE:	A
						ENGINEER: S	S26528DKØ1AØ TEVE SCULLY	02/25/2004 PAGE: 1 /17	-
	8	7	6	5	4	З	2	1	

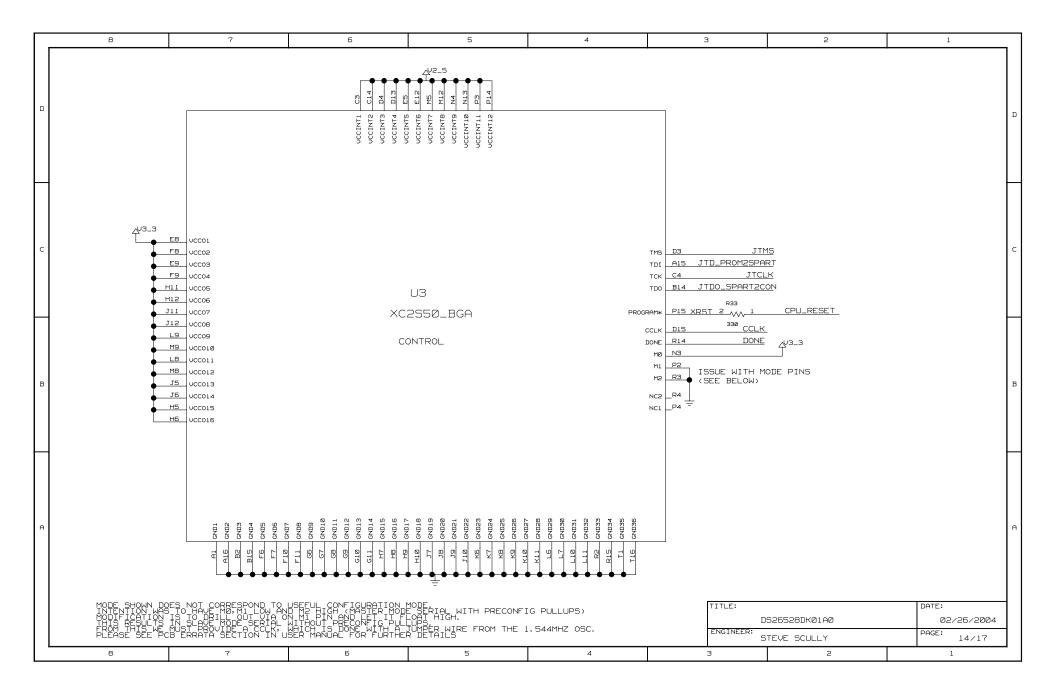











Γ	8	7	Б	5	4	З	2	1
D			SCANEN228 1M SCANEN228 1M BA		SYNC528_<81> マーマーローローローロー T い ゴ 戸 迎 と い 王 い ゴ 戸 迎 と い			
			602-55/087 02-55/086	103-5 104-5 105-5 106-5 -5\UREF 107-5 109-5 1010-5 1011-5 1012-5	I013_5 I014_5 I015_5 I016_5 I017_5 I018_5 I018_5 I019_5			
с		تے عہ کے قہ	N2 I01_4 P I02_4 P9 I03_4\VREF 5 T3 I04_4 5 I05_4 6 I05_4 6 I06_4 9 I07_4 2 I08_4	BANK 5 U3	101	1.6\TRDY J2 I02.6 R5 8 TCLK528_<8 I03.6 M2 7 4.6\VREF J3 I05.6 T5 5 I06.6 M1 5 I07.6 D2 4 I08.6 E1 3 I09.6 E2 2 2.6\VREF N1	1>	
в		ت ت 5 م 5 م ک م	D1 1010_4 D R R6 1011_4 X T7 1012_4 A 3 M3 1013_4 5 P5 1014_4 1 E3 1015_4 5 F3 1016_4 5 F3 1017_4 6 F3 1017_4 0 F3 1017_4 0 F3 1017_4 1019_4 P12 1020_4	XC2S50_BG		IOI1_6 F1 _ 1 IO12_6 M4 _ 8 _ TSER528_<{ IO13_6 L3 _ 7 IO14_6 R7 _ 6 IO15_6 N5 _ 5 IO15_6 H1 _ 4 IO17_6 E4 _ 3 IO18_6 F4 _ 2 IO19_6 H2 _ 1 IO28_6 T14 IO21_6 M10	31>	
A			N10 I021_4 P10 I022_4 		К3 71 63 63 63 63 64 71 13	1022_6 _R12 1023_6 _P11 	IS26528DKØ1AØ	DATE: 02/25/2004 PAGE: 9 /17
Ľ	8	7	6	5	4	3	2	1

	8	7	6	5	4	3	3	2	1
р С	RCLK528_<8 TCLK528_<8 R5ER528_<8 TSER528_<8 RSTNC528_<8. RCHBK528_<8. TCHBK528_<8. RSIG528_<8. TSIG528_<8 RSIG528_<8 RM528_<81>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TCLKE RSERE TSERE RSYNC TSYNC RCHBH TCHBH TSIGE TSIGE	J2 528_(8.1) 4 1 1 2 528_(8.1) 4 3 3 4 528_(8.1) 4 5 5 6 528_(8.1) 4 7 7 8 528_(8.1) 4 9 9 10 528_(8.1) 4 11 11 12 (528_(8.1) 4 13 13 14 (528_(8.1) 4 15 15 16 528_(8.1) 4 17 17 18 528_(8.1) 4 19 19 20 3_(8.1) 4 21 21 22 CONN_222	2 4 5 8 10 12 14 15 18 20 P =	RCLK528_<81 TCLK528_<81 R5ER528_<81 T5ER528_<81 R5YNC528_<8 TSYNC528_<8 RCHBK528_<8 TCHBK528_<8 TCHBK528_<81 TSIG528_<81 RM528_<81	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PCM_R PCM_T PCM_T PCM_T PCM_T	KCLK 3 4 KD 5 6 KD 7 8 SYNC 9 10
в	RCLK528_<8 TCLK528_<8 R5ER528_<8. TSER528_<8. R5YNC528_<8. TSYNC528_<8. RCHBK528_<8. TCHBK528_<8. R5IG528_<8. TSIG528_<8. R5IG528_<8.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TCLKS RSER TSER RSYNC TSYNC RCHB RCHB RCHB RSIGS TSIGS	J9 528_<81> 5 1 528_<81> 5 3 3 4 528_<81> 5 5 5 6 528_<81> 5 7 7 8 528_<81> 5 9 10 528_<81> 5 9 11 12 528_<81> 5 11 11 12 528_<81> 5 11 13 14 528_<81> 5 17 15 15 528_<81> 5 17 17 18 528_<81> 5 17 17 18 528_<81> 5 17 17 18 528_<81> 5 17 19 20 528_<81> 5 17 11 12 528_<81> 5 17 13 14 528_<81> 5 17 17 18 528_<81> 5 17 19 20 528_<81> 5 17 12 528_<81> 5 12 22 528_<81> 5 12 22 528_<81> 5 12 528_<81> 5 17 12 528_<81> 5 17 13 14 528_<81> 5 17 15 15 528_<81> 5 17 16 528_<81> 5 17 17 18 528_<81> 5 12 21 22 CONN_222	$ \frac{2}{4} $ $ \frac{4}{5} $ $ \frac{5}{12} $ $ \frac{12}{14} $ $ \frac{15}{18} $ $ \frac{22}{22} $ $ \frac{1}{7} $	RCLK528_<81 TCLK528_<81 R5ER528_<81 T5ER528_<81 R5YNC528_<8 T5YNC528_<8 RCHBK528_<8 TCHBK528_<81 T5IG528_<81 RSIG528_<81 RM528_<81>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-F528_<81>
A	RCLK528_<8. TCLK528_<8. R5ER528_<8. T5ER528_<8. R5YNC528_<8. T5YNC528_<8. RCHBK528_<8. RCHBK528_<8. TCHBK528_<8. R5IG528_<8. R5IG528_<8.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TCLK RSER TSER RSYN RCHB TCHB RS10 TS TCHB TS TS TS TS TS TS TS TS TS TS TS TS TS	J8 528_(8.1) 6 1 528_(8.1) 6 3 528_(8.1) 6 5 528_(8.1) 6 7 (528_(8.1) 6 7 (528_(8.1) 6 1 11 12 (528_(8.1) 6 1 13 14 (528_(8.1) 6 15 (528_(8.1) 6 15 (528_(8.1) 6 15 (528_(8.1) 6 15 (528_(8.1) 6 19 (9 20 (200N_22) (200N_22) (200N_22)	2 4 5 8 10 12 14 16 18 20 22 22 22 22	T <u>SYSCLK</u> T <u>SSYNC5</u> R <u>SYSCLK</u> B <u>PCLK52</u> R <u>EFCLK5</u> M <u>CLK528</u>	128 3 4 528 5 5 18 7 8 12 12 13 11	RLC BDKØ1AØ	Image:
	8	7	6	5	4		З	2	1

Γ	8	7	б	5	4	З	2	1
D								ם
с			1 CEJ 2 2 C27 1 AUF 1 AUF 1 CE2 2	$\frac{100^{W^2}}{100^{W^2}} = \frac{100^{W^2}}{2} = \frac{100^{W^2}}{100^{W^2}} = \frac{100^{W^2}}{2} = \frac{100^{W^2}}{100^{W^2}} = \frac{100^{W^2}}{2} = \frac{100^{W^2}}{200^{W^2}} = \frac{100^{W^2}}{2$		$\frac{1 \text{ tr}^2}{1 \text{ tr}^2} = \frac{1}{2}$		с
в			$ \begin{array}{c} \mathbb{Z} \longrightarrow \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 2$		1.10 ² C C C C C C C C C C C C C C C C C C C	$\frac{1}{10}$		В
Ĥ						TITLE:		A DATE:
	8	7	6	JP2		ENGINEER:	DS26528DKØ1AØ DTEVE SCULLY 2	02/25/2004 PAGE: 15 17

	8	7	6	5	4	З	2	1	
[<u> </u>			<u>.</u>		!	1	!	1
	*** Signal Cross-Reference for the	entire design *** RT	TIP528_<81> 384< 388< 3C4< 3C8 4C8< 584< 588< 684< 4						
	ADDR528_<120> 1282> 283 ADDRMICRO<150> 1185> 1184< 12A8 BPCLK528 288> 9A6<> 10A3<>		884< 888< W_M 1186<> 1204<> CANEN528 905<> 208<						
D	BTS528 288< CCLK 13C6<> 14B2<>	50	CANMO528 9D5<> 2C8< CHBK528_<81> 3A1> 3A5> 3C1> 3C5						D
	CFG_DIN 12C3<> 13C6<> CLK1544_T 11B2<> 12D6< CLK16384_T 11B4<> 12C7<	тс	4C5> 10A6< 10A8< 10B 10C4< 10D6< 10D8< CLK528_<81> 3B1> 3B5> 3C1> 3C5						
	CPU_RESET 1186<> 288< 14C2< CS528 12A4<> 288<		4C5> 9C2> 10A6< 10A8 10C8< 10D4< 10D6< 10	< 10C4< 10C6< D8<					ſ
	CS_M 11B7<> 12D4<> DAT528_<70> 2A3 12C2 DAT_MICRO<70> 11A5> 12C8	AT	RING528_<81> 3B1> 3B5> 3D1> 3D5 4D5> 5C4< 5C8< 5C4< 1 8C4< 8C8<						
H	DIGIO_EN528 9D5<> 2B8< DISINVRX1 5B5<>	те	SER528_<81> 3A1> 3A5> 3C1> 3C5 4C5> 9B2> 10A5< 10A8	< 1084< 1086<					Η
	DISINVRX2 5B2<> DISINVRX3 6B6<> DISINVRX4 6B2<>	те	1006< 10D4< 10D6< 101 SIG528_<81> 3A1> 3A5> 3C1> 3C5 4C5> 10A6< 10A8< 10B	> 4A1> 4A5> 4C1>					
	DISINVRX5 786<> DISINVRX6 782<> DISINVRX7 886<>		10C4< 10C5< 10C8< SSYNC528 9D5<> 10A3<> 2A8< SYNC528_<81> 3A1> 3A5> 3C1> 3C5	× 401× 405× 401×					
	DISINVRX8 8B2<> DISINVTX1 5C5<>		4C5> 9D5 10A6< 10A8< 10B8< 10D4< 10D6< 10	1084< 1086<					с
	DISINUTX2 5C2<> DISINUTX3 6D6<> DISINUTX4 6D2<>		SYSCLK528 9D5<> 10A3<> 2B8< TIP528_<81> 3B1> 3B5> 3C1> 3C5 4C5> 5D4< 5D8< 6D4< 1						
	DISINUTXS 7D5<> DISINUTXE 7D2<> DISINUTX7 8D5<>		8D4< 8D8< XENA528 2A8> 9D5<> E_M 1186<>> 12D4<>						
	DISINUTX8 8D2<> DONE 13B5<> 14B2<>	WF XF	R_RW528 12A4<> 2B8< RST 13B5<> 14C3<						
\vdash	INT528 288> 11A7<> 12A6<> INT528_LED 12A6<> JTCLK 13A6<> 13B5<> 2C8<		_INIT 12A5<> 13B5<>						\square
	JTD528_PROM 2C8> 13C5<> JTD1528_CON 13A5<> 2C8< JTD0_SPART2CON 13A5<> 14C2>								
	JTD_PR0M2SPART 13C4<> 14C2< JTMS 13A6<> 13C6<> 2C8<	14C2<							
	JTRST528 13A6<> 2C8< MCLK528 9D5<> 10A3<> 2B8< PCM_RSYNC 9A5<> 10D2<> 11C8<	,							
в	PCM_RXCLK 9A5<> 10D2<> 11CB< PCM_RXD 9A5<> 10D2<> 11CB<	> >							В
	PCM_TXCLK 9A5<> 10D2<> 11CB< PCM_TXD 9A5<> 10D2<> 11CB<	>							
	RCHBK528_<81> 3A4< 3A8< 3C4< 3C8 4C8< 10A6< 10A8< 10B 10D4< 10D5< 10D8<	3< 4A4< 4A8< 4C4< 34< 1086< 1088<							
\square	RCLK528_<81> 3A4< 3A8< 3C4< 3C8 4C8< 9C7< 10A6< 10A8 10C8< 10D4< 10D5< 10	K 10C4< 10C5<							\mid
	RD_DS528 12A4<> 2B8< REFCLK528 2B8<> 9A6<> 10A3<>								
	RLF528_<81> 3A4< 3A8< 3C4< 3C8 4C8< 10C2 RL05528_<81> 3A4< 3A8< 3C4< 3C8								
	4C8< 1082 RM528_<81> 3A4< 3A8< 3C4< 3C8 4C8< 10A6< 10A8< 108								
A	10C4< 10C5< 10C8< RRING528_<81> 3B4< 3B8< 3D4< 3D8	3< 4B4< 4B8< 4D4<							A
	4D8< 5B4< 5B8< 6B4< 8B4< 8B8< RSER528_<81> 3A4< 3A8< 3C4< 3C8	3< 484< 488< 4C4<							
	4C8< 987< 10A5< 10A8 10C8< 10D4< 10D5< 10 RSIG528_<81> 3A4< 3A8< 3C4< 3C8	3< 10C4< 10C5<							
	4C8< 10A6< 10A8< 10B 10C4< 10C6< 10C8< RSYNC528_<81> 3A4< 3A8< 3C4< 3C8	34< 1086< 1088<							
	4C8< 9A5 10A6< 10A8< 1088< 10D4< 10D5< 10	10B4< 10B6<				TITLE:		DATE:	
	R5YSCLK528 9A6<> 10A3<> 2B8<					ENGINEER:		PAGE:	
L	8	7	6	5	4	3	2]
	D	ſ	D	5	4	E	2	1 1	

	8	7	6	5		4		З	2		1	_
ם	**** Part Cross-Reference for C1 CAP1 1585 C2 CAP1 1585 C3 CAP1 1305 C4 CAP1 1305 C5 CAP1 1584 C7 CAP1 1584 C7 CAP1 1585 C8 CAP1 1585 C10 CAP1 1585 C10 CAP1 1585 C10 CAP1 1584 C11 CAP1 1584 C12 CAP1 1584 C13 CAP1 1584 C13 CAP1 1584 C13 CAP1 1584 C13 CAP1 1584		DS5 LED 1281 DS6 LED 1281 DS7 LED 1281 DS8 LED 1281 DS9 LED 1281 DS1 LED 1281 DS10 LED 1281 DS11 LED 1281 DS12 LED 1281 DS13 LED 1281 DS14 LED 1281 DS15 LED 1281 DS16 LED 1281 DS17 LED 1281 DS18 LED 1281 DS19 LED 1281 DS16 LED 1281 DS17 LED 1281 DS18 LED 1281 DS19 LED 1281 DS19 LED 1281 DS11 LED 1281		R27 RES R28 RES R30 RES R31 RES R31 RES R33 RES R34 RES R35 RES R36 RES R38 RES R39 RES R40 RES R41 RES	6C4 7C8 7D8 8D4 8C4 1 14C3 1 12A5 1 12A5 1 13A5 1 13B7 1 13B6 1 10B2 1 10B2 1 10A1						
с	C14 CAP1 1554 C15 CAP1 1354 C16 CAP1 1304 C17 CAP1 1304 C18 CAP1 1305 C19 CAP1 1306 C20 CAP1 1305 C21 CAP1 1305 C22 CAP1 15C5 C23 CAP1 15C5 C24 CAP1 15C5 C25 CAP1 15C5 C26 CAP1 15C5 C27 CAP1 15C5 C28 CAP1 15C5 C29 CAP1 15C5 C29 CAP1 15C5 C29 CAP1 15C5 C30 CAP1 15B4 C31 CAP1 13D8 C32 CAP1 13D8		J2 CONN_22P 10D5 J3 CONN_22P 10D7 J4 CONN_22P 10D7 J5 CONN_22P 10D7 J6 CONN_22P 10D7 J7 CONN_22P 10D3 J8 CONN_22P 10D3 J9 CONN_22P 10D5 J10 CONN_2PC_5P 5D5 J11 CONN_ENC_5P 5D5 J12 CONN_ENC_5P 5D5 J13 CONN_ENC_5P 5D5 J14 CONN_ENC_5P 5D5 J15 CONN_ENC_5P 5D5 J16 CONN_ENC_5P 5D5 J17 CONN_ENC_5P 5D5 J18 CONN_ENC_5P 5D5 J19 CONN_ENC_5P 5D5 J19 CONN_ENC_5P 5D5		R42 RES R43 RES R44 RES R45 RES R46 RES R47 RES R48 RES R49 RES R51 RES R53 RES R54 RES R55 RES R56 RES R58 RES R59 RES R560 RES	1 1091 1 1081 1 1082 1 1091 1 1091 1 1091 1 1091 1 1091 1 1091 1 1081 1 1081 1 1081 1 286 1 286 1 843 1 647 1 647 1 644						c
в	C33 CAP1 1585 C34 CAP1 15C5 C35 CAP1 1585 C36 CAP1 1584 C37 CAP1 1584 C38 CAP1 1584 C39 CAP1 1584 C40 CAP1 1584 C40 CAP1 1584 C42 CAP1 1584 C43 CAP1 1584 C43 CAP1 1584 C44 CAP1 1584 C45 CAP1 1584 C45 CAP1 1583 C46 CAP1 1583 C47 CAP1 1585 C48 CAP1 1585 C49 CAP1 1585 C50 CAP1 1585 C51 CAP1 1585		J21 CONN_BNC_SP 501 J22 CONN_BNC_SP 7D1 J23 CONN_BNC_SP 7D1 J24 CONN_BNC_SP 8D5 J25 CONN_BNC_SP 8D5 J26 RJ4.5.8 7C2 7C6 8C6 J27 RJ45.8 7C2 7C6 8C6 J28 CONN_SOP2 1107 J102 J107 J29 CONN_SOP2 1107 J102 J104 J102 J29 CONN_SOP2 1107 J104 J102 J107 J214 CON1_SOP2 1107 J104		RE51 RES R62 RES R63 RES R64 RES R65 RES R66 RES R67 RES R70 RES R72 RES R73 RES R74 RES R75 RES R76 RES R77 RES R76 RES R77 RES R77 RES R77 RES R77 RES R76 RES R77 RES R77 RES R77 RES R76 RES R77 RES	1 747 748 1 748 1 644 1 647 1 648 1 543 1 543 1 543 1 548 1 547 1 781 1 685 1 685 1 685 1 551 1 551 1 581						E
A	C52 CAP BAB C53 CAP 7A3 C54 CAP 7A6 C55 CAP 6A8 C55 CAP 6A8 C55 CAP 5A3 C56 CAP 5A8 C57 CAP 5A8 C58 CAP 5A6 C56 CAP1 15B5 C61 CAP1 15C6 C62 CAP1 15C6 C63 CAP1 5C3 C64 CAP1 5C3 C65 CAP1 8C3 C65 CAP1 5C3 C65 CAP1 5C7 C65 CAP1 7C7 D1 D10DE 13A7 D51 LED		R3 RCS 583 R4 RCS 583 R5 RCS 687 R6 RCS 687 R7 RCS 683 R8 RCS 787 R4 RCS 783 R1 RCS 783 R1.2 RCS 887 R1.3 RCS 883 R1.4 RCS 883 R1.5 RCS 883 R1.6 RCS 883 R1.7 RCS 683 R1.8 RCS 503 R1.9 RCS 503 R20 RCS 704 R22 RCS 704 R23 RCS 608 <th colspan="3"> SHI SHITCH_DPDT_SLIDE_6P 6C5 SH2 SHITCH_DPDT_SLIDE_6P 6C5 SH3 SHITCH_DPDT_SLIDE_6P 6C1 SH5 SHITCH_DPDT_SLIDE_6P 6C1 SH5 SHITCH_DPDT_SLIDE_6P 5C1 SH7 SHITCH_DPDT_SLIDE_6P 5C5 SH8 SHITCH_DPDT_SLIDE_6P 5C1 TI XFRR_1475_U 5B2 507 503 507 6B3 6B7 6D3 6D7 T2 XFRR_1475_U 5B2 507 503 507 6B3 6B7 6D3 6D7 T4 NFR.1475_U 5B2 507 503 507 6B3 6B7 6D3 6D7 U1 MAX1792 13D6 U2 XILINK_XCF015 13C5 U3 XC2558_6D 9C5 12C5 14C5 U4 D526528_6CA_U 286 3B3 3B7 3D3 3D7 4B3 4B7 4D3 4D7 </th> <th>TITLE:</th> <th></th> <th>DA</th> <th>ΤΕ:</th> <th>f</th>		 SHI SHITCH_DPDT_SLIDE_6P 6C5 SH2 SHITCH_DPDT_SLIDE_6P 6C5 SH3 SHITCH_DPDT_SLIDE_6P 6C1 SH5 SHITCH_DPDT_SLIDE_6P 6C1 SH5 SHITCH_DPDT_SLIDE_6P 5C1 SH7 SHITCH_DPDT_SLIDE_6P 5C5 SH8 SHITCH_DPDT_SLIDE_6P 5C1 TI XFRR_1475_U 5B2 507 503 507 6B3 6B7 6D3 6D7 T2 XFRR_1475_U 5B2 507 503 507 6B3 6B7 6D3 6D7 T4 NFR.1475_U 5B2 507 503 507 6B3 6B7 6D3 6D7 U1 MAX1792 13D6 U2 XILINK_XCF015 13C5 U3 XC2558_6D 9C5 12C5 14C5 U4 D526528_6CA_U 286 3B3 3B7 3D3 3D7 4B3 4B7 4D3 4D7 			TITLE:		DA	ΤΕ:	f
								ENGINEER:		PA	GE:	+
1	8	7	6	5		4		З	2		1	-